Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty
نویسندگان
چکیده
منابع مشابه
Sparse Principal Components Analysis
Principal components analysis (PCA) is a classical method for the reduction of dimensionality of data in the form of n observations (or cases) of a vector with p variables. Contemporary data sets often have p comparable to, or even much larger than n. Our main assertions, in such settings, are (a) that some initial reduction in dimensionality is desirable before applying any PCA-type search for...
متن کاملStructured Sparse Principal Component Analysis
We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured and constrained to belong to a prespecified set of shapes. This structured sparse PCA is based on a structured regularization recently introduced by [1]. While classical sparse priors only deal with cardinality, the regularization we use encodes higher-orde...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملStructured sparse principal component analysis for fMRImaging
The use of component analysis on fMRI data allows to extract some interesting hidden components out of the data such as neuronal networks. While independent component analysis (ICA) is currently preferred in this application, we try to know whether sPCA could give better results than ICA when applied to fMRI data by highlighting the strengths and weaknesses of both techniques. Indeed, the neuro...
متن کاملSparse Higher-Order Principal Components Analysis
Traditional tensor decompositions such as the CANDECOMP / PARAFAC (CP) and Tucker decompositions yield higher-order principal components that have been used to understand tensor data in areas such as neuroimaging, microscopy, chemometrics, and remote sensing. Sparsity in high-dimensional matrix factorizations and principal components has been well-studied exhibiting many benefits; less attentio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2018
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2017.2749140